
ncclient Documentation
Release 0.3.1

Shikhar Bhushan

January 27, 2014

Contents

i

ii

ncclient Documentation, Release 0.3.1

ncclient is a Python library for NETCONF clients. It aims to offer an intuitive API that sensibly maps the XML-
encoded nature of NETCONF to Python constructs and idioms, and make writing network-management scripts
easier. Other key features are:

• Supports all operations and capabilities defined in RFC 4741.

• Request pipelining.

• Asynchronous RPC requests.

• Keeping XML out of the way unless really needed.

• Extensible. New transport mappings and capabilities/operations can be easily added.

It is suitable for Python 2.6+ (not Python 3 yet, though), and depends on paramiko, an SSH library.

The best way to introduce is through a simple code example:

from ncclient import manager

use unencrypted keys from ssh-agent or ~/.ssh keys, and rely on known_hosts
with manager.connect_ssh("host", username="user") as m:

assert(":url" in m.server_capabilities)
with m.locked("running"):

m.copy_config(source="running", target="file:///new_checkpoint.conf")
m.copy_config(source="file:///old_checkpoint.conf", target="running")

Contents:

Contents 1

http://tools.ietf.org/html/rfc4741.html
http://www.lag.net/paramiko/

ncclient Documentation, Release 0.3.1

2 Contents

CHAPTER 1

manager – High-level API

1.1 Customizing

These attributes control what capabilties are exchanged with the NETCONF server and what operations are avail-
able through the Manager API.

1.2 Factory functions

A Manager instance is created using a factory function.

1.3 Manager

Exposes an API for RPC operations as method calls. The return type of these methods depends on whether we are
in asynchronous or synchronous mode.

In synchronous mode replies are awaited and the corresponding RPCReply object is returned. Depending on the
exception raising mode, an rpc-error in the reply may be raised as an RPCError exception.

However in asynchronous mode, operations return immediately with the corresponding RPC object. Error han-
dling and checking for whether a reply has been received must be dealt with manually. See the RPC documentation
for details.

Note that in case of the get() and get_config() operations, the reply is an instance of GetReply which
exposes the additional attributes data (as Element) and data_xml (as a string), which are of primary interest
in case of these operations.

Presence of capabilities is verified to the extent possible, and you can expect a MissingCapabilityError if
something is amiss. In case of transport-layer errors, e.g. unexpected session close, TransportError will be
raised.

1.4 Special kinds of parameters

Some parameters can take on different types to keep the interface simple.

1.4.1 Source and target parameters

Where an method takes a source or target argument, usually a datastore name or URL is expected. The latter
depends on the :url capability and on whether the specific URL scheme is supported. Either must be specified as
a string. For example, “running”, “ftp://user:pass@host/config”.

3

http://docs.python.org/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element

ncclient Documentation, Release 0.3.1

If the source may be a config element, e.g. as allowed for the validate RPC, it can also be specified as an XML
string or an Element object.

1.4.2 Filter parameters

Where a method takes a filter argument, it can take on the following types:

• A tuple of (type, criteria).

Here type has to be one of “xpath” or “subtree”.

– For “xpath” the criteria should be a string containing the XPath expression.

– For “subtree” the criteria should be an XML string or an Element object containing the
criteria.

• A <filter> element as an XML string or an Element object.

4 Chapter 1. manager – High-level API

http://docs.python.org/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element
http://docs.python.org/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element
http://docs.python.org/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element

CHAPTER 2

Complete API documentation

2.1 capabilities – NETCONF Capabilities

2.2 xml_ – XML handling

2.2.1 Namespaces

2.2.2 Conversion

2.3 transport – Transport / Session layer

2.3.1 Base types

2.3.2 SSH session implementation

2.3.3 Errors

2.4 operations – Everything RPC

2.4.1 Base classes

2.4.2 Operations

Retrieval

Editing

Locking

Session

2.4.3 Exceptions

5

ncclient Documentation, Release 0.3.1

6 Chapter 2. Complete API documentation

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

7

ncclient Documentation, Release 0.3.1

8 Chapter 3. Indices and tables

Python Module Index

c
ncclient.capabilities, ??

o
ncclient.operations, ??

t
ncclient.transport, ??

9

