
ncclient Documentation
Release 0.6.9

Shikhar Bhushan nd Leonidas Poulopoulos

Aug 08, 2020

CONTENTS

1 Supported device handlers 3
1.1 manager – High-level API . 3
1.2 Complete API documentation . 5

2 Indices and tables 7

Python Module Index 9

Index 11

i

ii

ncclient Documentation, Release 0.6.9

ncclient is a Python library for NETCONF clients. It aims to offer an intuitive API that sensibly maps the XML-
encoded nature of NETCONF to Python constructs and idioms, and make writing network-management scripts easier.
Other key features are:

• Supports all operations and capabilities defined in RFC 6241.

• Request pipelining.

• Asynchronous RPC requests.

• Keeping XML out of the way unless really needed.

• Extensible. New transport mappings and capabilities/operations can be easily added.

The best way to introduce is through a simple code example:

from ncclient import manager

use unencrypted keys from ssh-agent or ~/.ssh keys, and rely on known_hosts
with manager.connect_ssh("host", username="user") as m:

assert(":url" in m.server_capabilities)
with m.locked("running"):

m.copy_config(source="running", target="file:///new_checkpoint.conf")
m.copy_config(source="file:///old_checkpoint.conf", target="running")

As of version 0.4 there has been an integration of Juniper’s and Cisco’s forks. Thus, lots of new concepts have been
introduced that ease management of Juniper and Cisco devices respectively. The biggest change is the introduction of
device handlers in connection params. For example to invoke Juniper’s functions and params one has to re-write the
above with device_params={‘name’:’junos’}:

from ncclient import manager

with manager.connect(host=host, port=830, username=user, hostkey_verify=False, device_
→˓params={'name':'junos'}) as m:

c = m.get_config(source='running').data_xml
with open("%s.xml" % host, 'w') as f:

f.write(c)

Respectively, for Cisco Nexus, the name is nexus. Device handlers are easy to implement and prove to be futureproof.

The latest pull request merge includes support for Huawei devices with name huawei in device_params.

CONTENTS 1

https://tools.ietf.org/html/rfc6241.html

ncclient Documentation, Release 0.6.9

2 CONTENTS

CHAPTER

ONE

SUPPORTED DEVICE HANDLERS

• Juniper: device_params={‘name’:’junos’}

• Cisco:

– CSR: device_params={‘name’:’csr’}

– Nexus: device_params={‘name’:’nexus’}

– IOS XR: device_params={‘name’:’iosxr’}

– IOS XE: device_params={‘name’:’iosxe’}

• Huawei:

– device_params={‘name’:’huawei’}

– device_params={‘name’:’huaweiyang’}

• Alcatel Lucent: device_params={‘name’:’alu’}

• H3C: device_params={‘name’:’h3c’}

• HP Comware: device_params={‘name’:’hpcomware’}

• Server or anything not in above: device_params={‘name’:’default’}

Contents:

1.1 manager – High-level API

1.1.1 Customizing

These attributes control what capabilties are exchanged with the NETCONF server and what operations are available
through the Manager API.

3

ncclient Documentation, Release 0.6.9

1.1.2 Factory functions

A Manager instance is created using a factory function.

1.1.3 Manager

Exposes an API for RPC operations as method calls. The return type of these methods depends on whether we are in
asynchronous or synchronous mode.

In synchronous mode replies are awaited and the corresponding RPCReply object is returned. Depending on the
exception raising mode, an rpc-error in the reply may be raised as an RPCError exception.

However in asynchronous mode, operations return immediately with the corresponding RPC object. Error handling
and checking for whether a reply has been received must be dealt with manually. See the RPC documentation for
details.

Note that in case of the get() and get_config() operations, the reply is an instance of GetReplywhich exposes
the additional attributes data (as Element) and data_xml (as a string), which are of primary interest in case of
these operations.

Presence of capabilities is verified to the extent possible, and you can expect a MissingCapabilityError if
something is amiss. In case of transport-layer errors, e.g. unexpected session close, TransportError will be
raised.

1.1.4 Special kinds of parameters

Some parameters can take on different types to keep the interface simple.

Source and target parameters

Where an method takes a source or target argument, usually a datastore name or URL is expected. The latter depends
on the :url capability and on whether the specific URL scheme is supported. Either must be specified as a string. For
example, “running”, “ftp://user:pass@host/config”.

If the source may be a config element, e.g. as allowed for the validate RPC, it can also be specified as an XML string
or an Element object.

Filter parameters

Where a method takes a filter argument, it can take on the following types:

• A tuple of (type, criteria).

Here type has to be one of “xpath” or “subtree”.

– For “xpath” the criteria should be a string containing the XPath expression or a tuple containing
a dict of namespace mapping and the XPath expression.

– For “subtree” the criteria should be an XML string or an Element object containing the crite-
ria.

• A list of spec

Here type has to be “subtree”.

– the spec should be a list containing multiple XML string or multiple Element objects.

4 Chapter 1. Supported device handlers

https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element
https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element
https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element
https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element

ncclient Documentation, Release 0.6.9

• A <filter> element as an XML string or an Element object.

1.2 Complete API documentation

1.2.1 capabilities – NETCONF Capabilities

ncclient.capabilities.schemes(url_uri)
Given a URI that has a scheme query string (i.e. :url capability URI), will return a list of supported schemes.

class ncclient.capabilities.Capabilities(capabilities)
Represents the set of capabilities available to a NETCONF client or server. It is initialized with a list of capability
URI’s.

Members

":cap" in caps
Check for the presence of capability. In addition to the URI, for capabilities of the form
urn:ietf:params:netconf:capability:$name:$version their shorthand can be used as a key. For example,
for urn:ietf:params:netconf:capability:candidate:1.0 the shorthand would be :candidate. If version is sig-
nificant, use :candidate:1.0 as key.

iter(caps)
Return an iterator over the full URI’s of capabilities represented by this object.

1.2.2 xml_ – XML handling

Namespaces

Conversion

1.2.3 transport – Transport / Session layer

Base types

SSH session implementation

Errors

1.2.4 operations – Everything RPC

Base classes

Operations

Retrieval

Editing

Flowmon

1.2. Complete API documentation 5

https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.Element

ncclient Documentation, Release 0.6.9

Locking

Session

Subscribing

Exceptions

6 Chapter 1. Supported device handlers

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

7

ncclient Documentation, Release 0.6.9

8 Chapter 2. Indices and tables

PYTHON MODULE INDEX

c
ncclient.capabilities, 5

o
ncclient.operations, 5

t
ncclient.transport, 5

9

ncclient Documentation, Release 0.6.9

10 Python Module Index

INDEX

C
Capabilities (class in ncclient.capabilities), 5

M
module

ncclient.capabilities, 5
ncclient.operations, 5
ncclient.transport, 5

N
ncclient.capabilities

module, 5
ncclient.operations

module, 5
ncclient.transport

module, 5

R
RFC

RFC 6241, 1

S
schemes() (in module ncclient.capabilities), 5

11

	Supported device handlers
	manager – High-level API
	Complete API documentation

	Indices and tables
	Python Module Index
	Index

